Deep learning approaches to problems in speech recognition ,

نویسنده

  • George Edward Dahl
چکیده

Deep learning approaches to problems in speech recognition, computational chemistry, and natural language text processing George Edward Dahl Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2015 The deep learning approach to machine learning emphasizes high-capacity, scalable models that learn distributed representations of their input. This dissertation demonstrates the efficacy and generality of this approach in a series of diverse case studies in speech recognition, computational chemistry, and natural language processing. Throughout these studies, I extend and modify the neural network models as needed to be more effective for each task. In the area of speech recognition, I develop a more accurate acoustic model using a deep neural network. This model, which uses rectified linear units and dropout, improves word error rates on a 50 hour broadcast news task. A similar neural network results in a model for molecular activity prediction substantially more effective than production systems used in the pharmaceutical industry. Even though training assays in drug discovery are not typically very large, it is still possible to train very large models by leveraging data from multiple assays in the same model and by using effective regularization schemes. In the area of natural language processing, I first describe a new restricted Boltzmann machine training algorithm suitable for text data. Then, I introduce a new neural network generative model of parsed sentences capable of generating reasonable samples and demonstrate a performance advantage for deeper variants of the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning and Continuous Representations for Natural Language Processing

Deep learning techniques have demonstrated tremendous success in the speech and language processing community in recent years, establishing new state-ofthe-art performance in speech recognition, language modeling, and have shown great potential for many other natural language processing tasks. The focus of this tutorial is to provide an extensive overview on recent deep learning approaches to p...

متن کامل

Speech recognition using deep neural network – recent trends

Deep neural networks (DNN) are special forms of learning-based structures composed of multiple hidden layers formed by artificial neurons. These are different to the conventional artificial neural networks (ANN) and are accepted as efficient tools for solving emerging real world problems. Recently, DNNs have become a mainstream speech recognition tool and are fast becoming part of evolving tech...

متن کامل

How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets

In this paper, we investigate how to scale up kernel methods to take on large-scale problems, on which deep neural networks have been prevailing. To this end, we leverage existing techniques and develop new ones. These techniques include approximating kernel functions with features derived from random projections, parallel training of kernel models with 100 million parameters or more, and new s...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

Eliminating the negative effect of highly non-stationary environmental noise is a long-standing research topic for speech recognition but remains an important challenge nowadays. To address this issue, traditional unsupervised signal processing methods seem to have touched the ceiling. However, data-driven based supervised approaches, particularly the ones designed with deep learning, have rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015